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Introduction

» We are interested in using K-theory and cyclic (co)homology
of certain algebras in order to obtain numeric invariants of
Dirac operators

» The main idea is to then use these invariants in order to prove
geometric theorems.

» There is a hierarchy of geometric structures on which Dirac
operators live: compact manifolds, fibrations of compact
manifolds, Galois I'-coverings, G-proper manifolds with G a
Lie group, foliations

» Groupoids have a unifying role in this hierarchy

v

still, we need to start from the basics !

» First of all, what is a Dirac operator ?



Dirac operators: preliminaries

» We consider a riemannian manifold (M, g) and a complex
hermitian vector bundle E — M endowed with a V£;

» we assume that for each m € M there exists a linear map
Cm: T/ M ® C — End(E,,) satisfying :

Cm(gm)cm(gm) + Cm(gm)cm(gm) = _ng(gma Cm)

P> we assume that ¢, depends smoothly on m € M.

> using ¢y, m e M, we get C¥(M, T*"M @ E) = C®(M, E)
given by c(w ® e)(m) := cm(w(m))(e(m)) € Ep,

» this is called a Clifford action on the sections of E



Dirac operators: definition

Definition
An operator of Dirac type is obtained taking the composition
E
C®(M,E) L C®(M, T*M ® E) 5 C®(M, E).
Thus D := co VE.
> if the Clifford action ¢ is unitary, V£ is unitary and Clifford
(i.e. compatible with the Levi-Civita connection) then D is
formally self-adjoint , i.e. D = D*
» if dim M = 2k then E is graded, E = E* @ E~ and D is odd:

D:(DO+ DO_>. D~ = (D*)



Examples.

» The Gauss-Bonnet operator d + d* on differential forms, with
E =N"X.
Here V£ is induced by Levi-Civita and
cm(Em) = €(€m) — t(&m) with €(§m)(wm) = Em A wm and
t(&m)(wm) = interior multiplication of wy, by & = g(,&m)
> the Dolbeault operator on a complex hermitian manifold:
d+0" with E=A%*X and cp(&m) = e(€91) — u(€XD),
» the spin-Dirac operator DSP'™ = [J on a spin manifold
with E = $§ the spinor bundle;
P the signature operator on an even dimensional orientable
manifold D%&%: DS18" = d 4 d* but with the grading
E =A"M @ A~ M defined in terms of Hodge-x.



A crash-course on K-theory: K%(X)

> If Ais a commutative semigroup then the Grothendieck group
associated to A is

G(A) = Ax A/R

> (x,y)R(X,y')if3ze€ Asuchthat x+y' +z=x"+y+z

» we think to G(A) as formal differences of elements in A:
()] & x—y

» 7 =Grothendieck group associated to the semigroup N

» consider Vect(X) := isomorphism classes of complex vector
bundles over X; it is a semigroup !

» K°(X) := Grothendieck group associated to Vect(X)



Crash-course: Ko(C(X))
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consider V(C(X)), the semigroup of isomorphism classes of
finitely generated projective C(X)-modules

recall: a finitely generated projective C(X)-module is, by
definition, a direct summand of a free C(X)-module of finite
rank (C(X) @ --- @ C(X) (n times, for some n)).

Ko(C(X)) :=Grothendieck group associated to V(C(X))
K%(X) =~ Ko(C(X)) (Swan’ s theorem)

there is in fact an isomorphism of semigroups:

Vect(X) 2 V(C(X)), ¢(E) := C(X, E).

since a fin. gen. proj. C(X)-module S is a direct summand of
C(X)&--- @ C(X) it follows that S is the image of a
projector ps in Mpyn(C(X))

in fact V(C(X)) = Proj(Mx(C(X)) = equivalence classes of
projectors in My (C(X)) (equivalence relation = similarity; we
compare p in Mpx, and g in Mgy, by considering them in a
bigger matrix algebra )



Crash-course: K.(A)

» summarizing Ko(C(X)) = Grothendieck group associated to
the semigroup Proj(Ms(C(X))= formal differences of
projectors in My (C(X))

> Let now A be a unital algebra

» Kp(A) := Grothendieck group associated to the semigroup
Proj(Mso(A))

» an element in Kp(A) is a formal difference of projectors in
Moo (A)

» let now A be, in addition, a C*-algebra (or an algebra with
"some topology”)

> Ki(A) = GLao(A)/GLY ()

if 1» : A— B is a morphism then 9, : K.(A) — K.(B)

» if Ais not unital we define things through the unitalization AT

v



Fundamental properties of K,(A)

> Stability: if Alis a C*-algebra, K.(A) ~ K.(A ® K)

» Suspension isomorphism: there exists a functorial isomorphism
Oa: Ki(A) ~ Ko(S(A)) with S(A) .= G(R)® A

P> Bott periodicity: there exists a functorial isomorphism
Ba : Ko(A) =~ K1(5(A))

» if Ais a dense Fréchet subalgebra of a C*-algebra A which is
holomorphically closed then K.(A) = K.(A)

> if0+J 5 A5 A/J — 0is a short exact sequence of
C*-algebras then there exists a 6-terms periodic long exact
sequence in K-theory:

Ko(J) —= Ko(A) —> Ko(A/J) (1)

0| Jo

Ki(A/J) <— Ki(A) =—— Ki(J).



A few examples

K°(point) =

KO(S') = Z; more generally K°(52"+1) = 7Z
K%(S?) = Z © Z; more generally K°(S?") = Z & 7Z
Ko(C) = Ko(K) =

Ki(C) = Ki(K) =0

\_/
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Basic properties of Dirac operators.

>
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D is an elliptic differential operator: op(D)(Em) = cm(Em)
with &, € ToM, and ¢p,(&m) is an isomorphism for &, # 0

D is essentially self-adjoint on L?(M, E); the unique
self-adjoint closed extension has domain equal to H(M, E),
the first Sobolev space

there exists a parametrix Q : L>(M, E) — H*(M, E) for D,
i.e. an inverse modulo smoothing operators

QoD =Id—R and Do Q =Id—S5 with R and S smoothing
(R and S are the remainders...)

recall: R is a smoothing operator if

Ru(x) = [}, kr(x,y)u(y)dy with Kg € C*°(M x M, E X E*)
if M is compact without boundary then a smoothing operator
R defines a compact operator on L2 and on each Sobolev HX.

in fact R defines a trace class operator; moreover
Tr(R) = [, trx(Kr(x, x))dx



Basic properties of Dirac operators (cont)

>
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Summarizing: D is invertible modulo compacts

thus (Atkinson’s theorem) D is Fredholm: dim Ker(D) < oo
and dim coker(D) < oo

ind(D) := dim Ker(D) — dim coker(D) =
dim Ker(D) — dim Ker(D¥)
if dim M = 2k then E is graded, E = ET @ E~ and D is odd:

D:(DO+ DO_>. D~ = (D*)

ind(D) = 0 (since D = D*) but if dim M = 2k, ind D # 0
Calderon’s formula: ind(DT) = Tr(S¥) — Tr(SN) vN > 1.
Here S. are the remainders of a parametrix for DT



A glimpse of pseudodifferential operators

» The parametrix @, i.e. the pseudo-inverse of D, has a special
structure: it is a pseudodifferential operator of order —1:
Q € V1(M,E).

» let U be an open ball in R”

> W!(U) is the space of linear operators P : C(U) — C>(U)
that can be written as

(Pu)(x) = [ & p(x i)

» pe C®(U x R") is a function of compact x-support
uniformly in & satisfying the following: Vo, 8 3 C, g such that

102D (px, )| < Cas(1 + IV

> we have just defined the space of symbols of order ¢:
SYU x R")

> we define W(U, CK) in terms of matrices of such operators



A glimpse of pseudodifferential operators (cont)
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we define W(M, E) by globalizing this local definition
composition formula: W¢(M, E) o WK(M, E) Cc W*k(M, E)
NkezV*(M, E) := W=°°(M, E) = smoothing operators

the local symbols give a well defined principal symbol
opr(P)(&m) - Em — En Vme M

in fact o (P) € C*°(T*M,End(n*E, m*E))

if P,Q € VM, E) and 0p,r(P) = o (Q) then

P— Qe Vi~(M,E)

the parametrix of D is obtained from an inductive procedure;
the first step is to take the operator in W~1(M, E) with

symbol given by the inverse of the symbol of D (which is
Clifford multiplication).

the inverse symbol is well defined because D is elliptic



A new look at the Fredholm index

P> we are on an even dimensional compact manifold M and a
Z»-graded odd Dirac operator D acting on the sections of
E=Et®E~

» | want to give a different description of ind(D") € Z

» Claim: there exists an index class Ind(D) € Ko(W~>°(M, E))
and a trace functional 7: W=>°(X, E) — C such that

ind(D*) = 7(Ind(D))

P here 7 is extended to matrices in the obvious way:

7(pyj) == >_; T(Pjj)



The index class Ind(D) € Ko(WV~>°(X, E))

> Let Q € WI(M,E~,ET) be a parametrix for D* with
remainders Sy € W=°°(M, E¥)

» Consider the 2 x 2 matrix

po_ S22 S (I+54)Q
' S_D* | —S2 :

» Entries are in the unitalization of W~=>°(M, E)

P It is a projector

» by definition Ind(D) := [P] — [e1]€ Ko(W (M, E))
0

0 1
» Conclusion: we have defined Ind(D)e Ko(WV~°(M, E))

> here e; 1= < ) (also a projector)



From the index class Ind(D) to ind(D™)

» define 7: W"°(M, E) — C as 7(R) := Tr(R)
> we know (Calderon) that ind(DT) = Tr(S}) — Tr(SN), N > 1
» it is now clear that 7(Ind(D)) = ind(D™) since

2
H( 5_55+ 5+(I_J;35+)Q > = Tr(S%) — Tr(52) = ind(D™)

by Calderon formula



0-cyclic cocycles
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let A be a Fréchet algebra
HC%(A) = {7 : A — C continuous | 7(apa1) = 7(a1a0)}
thus HCY(A) = continuous traces on A

HCP(A) is the 0-degree cyclic cohomology group associated
to A

we have a pairing (-,-) : Ko(A) ® HC°(A) — C:

([(pip)], ) = 227 (pyy)

our example: A = V~°°(X,E) and 7 € HCO(W~>°(X, E))
given by the trace: V™°(X,E) > R — 7(R) := Tr(R) € C;
denote 7 = Tr ;

we have proved that (Ind(D), Tr) = ind(D™)

so, we have expressed ind(D ™) as a pairing between an index
class Ind(D) and a 0-degree cyclic cocycle Tr.



Comments
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is all this really interesting ?
yes and no

recall that if A is a dense Fréchet subalgebra of a C*-algebra
A which is holomorphically closed then K.(A) = K.(A)

Example: W=°°(M) is dense and holomorphically closed in
K(L2). So Ki(V=°(M)) = K.(K(L?))

but Ko(K(L?)) =7 and Ki(K(L?))=0

so, no, nothing really new.......

on the other hand, yes, the point of view of going to K-theory
and cyclic cohomology is VERY important

to get something new we shall need to pass to the universal
cover M where we shall get interesting K-theory groups



More on the index class
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where does the definition of the index class
Ind(D) = [P] — [e1] come from ?!
we now expunge E from the notation.....

recall that if A is a dense Fréchet subalgebra of a C*-algebra
A which is holomorphically closed then K.(A) = K.(A)

E.g.: we have seen that W~°°(M) is dense holomorphically
closed in K(L?). So Ki(V~>(M)) = K.(K(L?))
from the properties of the principal symbol we have
0— VM) = WoX) L C®(S*M) — 0
consider its C* closure in B(L2)
0 — K(L?) — WwO(M) & C(S*M) — 0
get a long exact sequence in K-theory
oo K(C(5*X)) & Ko(K(L2)) — - -.
an elliptic operator P defines a class op € Ki(C(S*M))

unraveling the definition one discovers that the index class we
have introduced is d(op) € Ko(K(L?)) = Ko(V=°(M))
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