K-Theoretic and homological invariants of Dirac operators

Paolo Piazza (Sapienza Università di Roma).

IMJ-PRG summer school 2025 Groupoids from a measurable, topological and geometric perspective Outline of the second lecture

Summary of the first lecture

Index classes on Galois coverings

The analytic surgery sequence

Summary

- we have defined Dirac operators and explained that they are Fredholm
- ind $D^+ = \dim \operatorname{Ker} D^+ \dim \operatorname{Ker} D^-$
- we talked briefly about the filtered algebra of pseudodifferential operators {Ψ^k(M, E)), k ∈ ℤ}
- ∩_{k∈ℤ}Ψ^k(M, E)) =: Ψ^{-∞}(M, E) is the algebra of smoothing operators
- We have defined K_{*}(A), with A a C*-algebra and we have stated the main properties
- we have expressed ind(D⁺) as a pairing between an index class Ind(D)∈ K₀(Ψ^{-∞}(M, E)) and a 0-degree cyclic cocycle Tr ∈ HC₀(Ψ^{-∞}(M, E))
- $\blacktriangleright \langle \mathsf{Ind}(D), \mathrm{Tr} \rangle = \mathsf{ind}(D^+)$
- we gave two descriptions of $Ind(D) \in K_0(\Psi^{-\infty}(M, E))$

Operators on \widetilde{X}

- we now pass to the universal cover \widetilde{X} or to any Galois Γ -cover
- ▶ we lift all the data defining our Dirac operator to \widehat{X} and get a **Γ**-equivariant Dirac operator \widetilde{D}
- we consider Ψ^{-∞}_{Γ,c}(X), the Γ-equivariant smoothing operators of Γ-compact support
- ► this means that the support of the Schwartz kernel is compact when projected to $\widetilde{X} \times \widetilde{X} / \Gamma$ (Γ acting diagonally)
- ▶ given \widetilde{D} (\mathbb{Z}_2 -graded odd) we can construct a parametrix $\widetilde{Q} : L^2(\widetilde{X}, \widetilde{E}^-) \to \text{Dom}(\widetilde{D}^+)$ for \widetilde{D}^+ with remainders $\widetilde{S}_{\pm} \in \Psi^{-\infty}_{\Gamma,c}(\widetilde{X}, \widetilde{E}^{\pm})$: $Q \circ \widetilde{D}^+ = \text{Id} - \widetilde{S}_+, \quad \widetilde{D}^+ \circ Q = \text{Id} - \widetilde{S}_-$

Index classes

Consider now the projector

$$\widetilde{P}:=\left(egin{array}{cc} \widetilde{S}_+^2&\widetilde{S}_+(I+\widetilde{S}_+)\widetilde{Q}\ \widetilde{S}_-\widetilde{D}^+&I-\widetilde{S}_-^2\end{array}
ight).$$

- Entries are in the unitalization of $\Psi_{\Gamma,c}^{-\infty}(\widetilde{X},\widetilde{E})$
- ► By definition $\operatorname{Ind}_{\Gamma,c}(\widetilde{D}) := [\widetilde{P}] [e_1]$ in $\mathcal{K}_0(\Psi_{\Gamma,c}^{-\infty}(\widetilde{X},\widetilde{E}))$
- this is the compactly supported index class
- ► define $C^*(\widetilde{X}, \widetilde{E})^{\Gamma} := \overline{\Psi_{\Gamma,c}^{-\infty}(\widetilde{X}, \widetilde{E})}$, the C^{*}-closure in $\mathcal{B}(L^2)$
- $C^*(\widetilde{X}, \widetilde{E})^{\Gamma}$ is known as the Roe algebra of the pair $(\widetilde{X}, \widetilde{E})$
- ▶ the same formula defines $\operatorname{Ind}_{\Gamma}(\widetilde{D}) \in K_0(C^*(\widetilde{X}, \widetilde{E})^{\Gamma})$
- this is the C*-index class and it is the index class we are actually interested in (will explain why ...)

Index classes (cont)

- one can prove that K_{*}(C^{*}(X̃, Ẽ)^Γ) = K_{*}(C^{*}_rΓ) and the latter is a very interesting K-theory group (in contrast with K_{*}(K(L²)) !!)
- recall that C^{*}_rΓ is the closure of CΓ in B(ℓ²(Γ)), where g ∈ CΓ ≡ {f : Γ → C of compact support} acts by convolution on ℓ²(Γ)
- ► it is customary to write elements in $\mathbb{C}\Gamma$ as finite sums $\sum \alpha_{\gamma}\gamma$, with $\alpha_{\gamma} \in \mathbb{C}$

Exact sequences on \widetilde{X} (cont)

the Γ-index class can be framed as in the closed case

- ► there exists a short exact sequence $0 \to C^*(\widetilde{X}, \widetilde{E})^{\Gamma} \to \Psi^0_{\Gamma}(\widetilde{X}, \widetilde{E}) \xrightarrow{\sigma} C(S^*X, \operatorname{End}(\pi^*E)) \to 0$ where $\pi : S^*X \to X$
- ▶ there exists a long exact sequence in K-theory: $\cdots K_1(C(S^*X), \operatorname{End}(\pi^*E)) \xrightarrow{\delta} K_0(C^*(\widetilde{X}, \widetilde{E}^{\Gamma}) \cdots$
- our C*-index class Ind_Γ(D̃) ∈ K₀(C*(X̃, Ẽ^Γ) is the image under δ of the symbol class, exactly as before
- Conclusion: we have defined an index class in a very rich K-theory group !

Atiyah **F**-index

- on the algebra of Γ-equivariant smoothing operators we have Atiyah's Γ-trace
- $\operatorname{Tr}_{\Gamma}(R) = \int_{\mathcal{F}} \operatorname{tr}_m K_R(m,m) dm$ with \mathcal{F} a fundamental domain
- ▶ we can define $\operatorname{ind}_{\Gamma}(\widetilde{D}^+) = \operatorname{Tr}_{\Gamma}(\Pi_{\operatorname{Ker}_+}) \operatorname{Tr}_{\Gamma}(\Pi_{\operatorname{Ker}_-})$ where $\Pi_{\operatorname{Ker}_{\pm}}$ are the projections onto the kernels of \widetilde{D}^{\pm}
- Atiyah's L^2 -index theorem: $\operatorname{ind}_{\Gamma}(\widetilde{D}^+) = \operatorname{ind}(D^+)$
- as before, the Γ-index of Atiyah, ind_Γ(D̃⁺), is the pairing of Ind_{Γ,c}(D̃) ∈ K₀(Ψ^{-∞}_{Γ,c}(M̃, Ẽ)) with the Γ-Trace, an element in HC⁰(Ψ^{-∞}_{Γ,c}(M̃))
- ▶ viz. : $\operatorname{ind}_{\Gamma}(\widetilde{D}^+) = \langle \operatorname{Ind}_{\Gamma,c}(\widetilde{D}), \operatorname{Tr}_{\Gamma} \rangle$
- ► here we are thus using the pairing $\langle , \rangle : K_*(\Psi^{-\infty}_{\Gamma,c}(\widetilde{M})) \otimes HC^0(\Psi^{-\infty}_{\Gamma,c}(\widetilde{M})) \to \mathbb{C}$

A crash-course on cyclic cohomology

- ▶ $\mathcal{A} = \mathsf{Fr\acute{e}chet}$ algebra over \mathbb{C}
- Hochschild cochains of degree k: $C^{k}(\mathcal{A})$
- $C^k(\mathcal{A})$: all continuous k + 1-linear functionals on \mathcal{A}
- ▶ Hochschild codifferential $b: C^k(A) \to C^{k+1}(A)$

$$b\Phi(a_0\otimes\cdots\otimes a_{k+1}) = \sum_{i=0}^k (-1)^i \Phi(a_0\otimes\cdots\otimes a_i a_{i+1}\otimes\cdots\otimes a_{k+1}) + (-1)^{k+1} \Phi(a_{k+1}a_0\otimes a_1\otimes\cdots\otimes a_k).$$

- ▶ Hochschild cohomology of A is cohomology of $(C^*(A), b)$
- ► a Hochschild *k*-cochain $\Phi \in C^k(\mathcal{A})$ is called *cyclic* if $\Phi(a_k, a_0, \dots, a_{k-1}) = (-1)^k \Phi(a_0, a_1, \dots, a_k)$
- $C_{\lambda}^{k}(\mathcal{A}) = \{ \text{cyclic cochains} \} ; \text{ it is closed under } b.$
- cyclic cohomology $HC^*(A) =$ cohomology of $(C^k_{\lambda}(A), b)$.

Pairing $K_0(\mathcal{A})$ with $HC^{evev}((\mathcal{A}))$

• more generally $\langle \cdot, \cdot \rangle : \mathcal{K}_0(\mathcal{A}) \otimes \mathcal{HC}^{2k}(\mathcal{A}) \longrightarrow \mathbb{C}$

$$\langle [P], \Phi \rangle = \frac{1}{k!} \sum_{i_0, i_1, \dots, i_{2k}} \Phi(p_{i_0 i_1}, \dots, p_{i_{2k} i_0})$$

- ▶ in particular we have a pairing $K_0(\Psi_{\Gamma,c}^{-\infty}(\widetilde{M})) \otimes HC^{\operatorname{even}}(\Psi_{\Gamma,c}^{-\infty}(\widetilde{X})) \to \mathbb{C}$
- this pairing can be used in order to extract numbers out of our index class: these are the higher indices

Higher indices (Connes and Moscovici)

- we assume that X is even dimensional
- consider $\alpha \in H^k(\Gamma)$
- recall: the chains are antisymmetric left-invariant functions
 α : Γ^{k+1} → C
- and the differential is $\delta \alpha(g_0, g_1, \dots, g_{k+1}) = \sum_{j=1}^{k+1} (-1)^j \alpha(g_0, \dots, g_{j-1}, g_{j+1}, \dots, g_k)$
- classic: $H^k(\Gamma)$ is isomorphic to $H^k(B\Gamma)$
- ► consider HC*(CΓ)
- a cycle in HC^k(ℂΓ) is a (k+1)-multilinear functional τ on ℂΓ; we write it like τ(g₀, g₁,..., g_k)
- we can define a cyclic class [τ_φ^Γ] ∈ HC^k(ℂΓ) given by the cyclic cocycle: τ_α^Γ(g₀, g₁,..., g_k) = 0 if g₀ ··· g_k ≠ e τ_α^Γ(g₀, g₁,..., g_k) = α(g₀, g₀g₁,..., g₀ ··· g_k) if g₀ ··· g_k = e

Connes and Moscovici (cont)

- we can also define a cyclic class $\tau_{[\alpha]} \in HC^k(\Psi^{-\infty}_{\Gamma,c}(\widetilde{X}))$
- ▶ by definition $\tau_{[\alpha]}(A_0, \ldots, A_k) = \sum_{g_0 \ldots g_k = 1} \tau_{\alpha}^{\Gamma}(g_0, g_1, \ldots, g_k)$ $\int \chi(x_0) A_0(x_0, g_0 \cdot x_1) \cdots \chi(x_k) A_k(x_k, g_k \cdot x_0) dx_0 \cdots dx_k.$
- here the integration is over \widetilde{X}^{k+1}
- ► χ is a cut-off function satisfying $\sum_{\gamma \in \Gamma} \chi(\gamma^{-1} \cdot x) = 1$, for all $x \in \widetilde{X}$
- ▶ thus $\tau_{[\alpha]}$ defines a homom. $\langle \cdot, \tau_{[\alpha]} \rangle : K_0(\Psi_{\Gamma,c}^{-\infty}(\widetilde{X})) \to \mathbb{C}$
- ▶ applied to Ind_{Γ,c}(D̃) this defines a number, which is a higher (compactly supported) index
- Connes and Moscovici prove a geometric formula for these higher indices (à la Atiyah-Singer).
- the right hand side of these formulae are very important geometric objects (higher signatures, higher Â-genera)

Connes and Moscovici (cont)

- ▶ in general it is not known if $\langle \cdot, \tau_{[\alpha]} \rangle$ extends to $K_0(C^*(\widetilde{X})^{\Gamma})$
- Connes-Moscovici: if Γ is Gromov hyperbolic or of polynomial growth then there exists a dense holomorphically closed subalgebra Ψ^{-∞}_{Γ,c}(X) ⊂ B(X)^Γ ⊂ C*(X)^Γ such that ⟨·, τ_[α]⟩ extends to K_{*}(B(X)^Γ) = K_{*}(C*(X)^Γ).
- using the C*-index class we obtain under these assumptions higher C*-indices (Ind_Γ(*D*), τ_[α])
- there are cases in which Atiyah's Γ-index ind_Γ(D̃⁺) vanishes but a higher index does not, for example if X is equal to the *n*-torus

Invertible operators

- ► if \widetilde{D} is L^2 -invertible then the index class $\operatorname{Ind}_{\Gamma}(\widetilde{D}) \in K_*(C^*(\widetilde{X})^{\Gamma})$ vanishes
- ► for example, if *M* is spin and *g* is of positive scalar curvature, then $Ind_{\Gamma}(\widetilde{D}^{spin}) = 0$ (it is here that we need *C**-algebras !)
- ► to prove this vanishing we use: $(\widetilde{D}^{\text{spin}})^2 = \nabla \nabla^* + \text{scal}_{\widetilde{g}}/4$ (Lichnerowicz formula)
- if we want to distinguish metrics of positive scalar curvature (up to isotopy, for example) we need finer invariants
- Similarly if X is the union of two homotopy equivalent orientable manifolds then Ind_Γ(D̃^{sign}) = 0 (Kasparov, Hilsum-Skandalis)
- if we want to distinguish non-diffeomorphic manifolds that are homotopy equivalent we need once again finer invariants

Secondary numeric invariant

• we have the Cheeger-Gromov rho invariant: $\rho_{CG}(\widetilde{D}) := \eta_{(2)}(\widetilde{D}) - \eta(D)$

• here the L^2 -eta invariant and the eta invariant are defined by :

$$\eta_{(2)}(\widetilde{D}) = rac{2}{\sqrt{\pi}} \int_0^\infty \operatorname{Tr}_{\Gamma}(\widetilde{D}\exp(-(t\widetilde{D})^2)dt)$$

 $\eta(D) = rac{2}{\sqrt{\pi}} \int_0^\infty \operatorname{Tr}(D\exp(-(tD)^2)dt)$

Secondary numeric invariants; some geometric applications

These two invariants are very useful. Here are two results.

Theorem

(Chang-Weinberger '03) If M is a compact oriented manifold of dimension 4k + 3, k > 0, such that $\pi_1(M) = \Gamma$ has torsion, then there are infinitely many manifolds that are homotopic equivalent to M but not diffeomorphic to it. They are distinguished by the Cheeger-Gromov rho-invariant of the signature operator.

Theorem

(P.-Schick '07) *M* is spin of dimension 4k + 3, k > 0, with *g* of *PSC* and $\Gamma = \pi_1(M)$ with torsion. Then $|\pi_0(\mathcal{R}^+(M)/\text{Diffeo}(M))| = \infty$ and the connected components are distinguished by the Cheeger-Gromov rho invariant of the spin-Dirac operator. Basic questions and very short answers

▶ let \widetilde{D} be L^2 -invertible

- ► Q1: is there a rho class \(\rho(\overline{D})\) in a K-theory group producing this secondary numeric invariant upon the use of a suitable trace ?
- Q2: can we extract higher rho numbers out of this rho class by pairing it with higher cyclic cocycles ?
- Q3: can we use these higher rho numbers in order to study the moduli space of positive scalar curvature metrics ?
- A1: yes, there is a rho class in the analytic surgery sequence of Higson and Roe
- A2: yes, under additional assumptions on the group Γ we can define higher rho numbers (main result of P-Schick-Zenobi)
- A3: yes, we can apply these invariants in order to study moduli spaces of positive scalar curvature metrics (P-Shick-Zenobi).

The Higson-Roe surgery sequence: preliminaries

• let (X, d) be a metric space

- we are interested in C₀(X)-modules, that is Hilbert spaces H on which elements of C₀(X) act as bounded operators
- a bounded operator T on H has propagation ≤ R if
 ψ ∘ T ∘ φ ≡ 0 whenever the distance between the supports of
 ψ and φ is ≥ R
- Let now X be a smooth riemannian manifold
- Example 1: it is a classic result that e^{itD} has propagation $\leq |t|$ if D is a Dirac operator; this will be important
- Example 2: a smoothing operator with support in an *R*-neighbourhood of the diagonal has propagation ≤ *R*

consider D^{*}_c(X̃)^Γ:= Γ-equivariant bounded operators on L²(X̃) of finite propagation and pseudolocal (i.e. [f, T] is compact ∀f ∈ C[∞]_c(X̃));it's a subalgebra of B(L²)

The Higson-Roe surgery sequence

• $C_c^*(\widetilde{X})^{\Gamma} \subset \mathcal{B}(L^2(\widetilde{X}))$ is the subalgebra of $D_c^*(\widetilde{X})^{\Gamma}$ made of operators that are, in addition, locally compact (i.e. fT is a compact operator for any $f \in C^{\infty}_{c}(X)$). \triangleright $C_c^*(\widetilde{X})^{\Gamma}$ is an ideal in $D_c^*(\widetilde{X})^{\Gamma}$ $\blacktriangleright D^*(\widetilde{X})^{\Gamma} := \overline{D^*_c(\widetilde{X})^{\Gamma}}^{\mathcal{B}(L^2)}$ • $C^*(\widetilde{X})^{\Gamma} := \overline{C^*_c(\widetilde{X})}^{\mathcal{B}(L^2)}$; this is the original definition of Roe algebra (it is compatible with our old definition) ▶ the Roe algebra $C^*(\widetilde{X})^{\Gamma}$ is an ideal in $D^*(\widetilde{X})^{\Gamma}$ ▶ get $0 \to C^*(\widetilde{X})^{\Gamma} \to D^*(\widetilde{X})^{\Gamma} \to D^*(\widetilde{X})^{\Gamma} / C^*(\widetilde{X})^{\Gamma} \to 0$ • get $\cdots \to K_*(D^*(\widetilde{X})^{\Gamma}) \to K_*(D^*(\widetilde{X})^{\Gamma}/C^*(\widetilde{X})^{\Gamma}) \xrightarrow{\delta}$ $K_{++1}(C^*(\widetilde{X})^{\Gamma}) \rightarrow \cdots$

this is the analytic surgery sequence of Higson and Roe

More on the Higson-Roe surgery sequence

Important facts:

- we know already that $K_*(C^*(\widetilde{X})^{\Gamma}) = K_*(C_r^*\Gamma)$
- ► Paschke duality: $K_*(D^*(\widetilde{X})^{\Gamma}/C^*(\widetilde{X})^{\Gamma}) = K_{*+1}^{\Gamma}(\widetilde{X}) \equiv K_{*+1}(X)$
- here the K-homology groups K_{*}(X) have appeared; we shall see the definition at some point, but not now
- $S_*^{\Gamma}(\widetilde{M}) := K_{*+1}(D^*(\widetilde{M})^{\Gamma})$ is the analytic structure group
- We can rewrite the surgery sequence as
 - $\cdots \to K_{*+1}(C_r^*\Gamma) \to \mathrm{S}_*^{\Gamma}(\widetilde{X}) \to K_*(X) \xrightarrow{\delta} K_*(C_r^*\Gamma) \to \cdots$
- ► these groups behave functorially. So, if ũ : X̃ → EΓ is a Γ-equiv. classifying map then we can use ũ_{*} to map to the universal HR sequence:

 $\cdots \to K_{*+1}(C_r^*\Gamma) \to S_*^{\Gamma}(E\Gamma) \to K_*(B\Gamma) \xrightarrow{\delta} K_*(C_r^*\Gamma) \to \cdots$ The homomorphism δ is one of the many incarnations of the assembly map.

Index classes and Rho-classes

- as usual I shall not write the bundle E in the notation.....
- we fix a chopping function χ: a smooth odd function → ±1 as x → ±∞. Notice that χ² − 1 ∈ C₀(ℝ).
- ▶ from the finite propagation property of $\exp(iDt)$ we have $\chi(D) \in D^*(\widetilde{X})^{\Gamma}$ and $\phi(D) \in C^*(\widetilde{X})^{\Gamma}$ if $\phi \in C_0(\mathbb{R})$.
- So $\chi(D)$ is an involution in $D^*(\widetilde{X})^{\Gamma}/C^*(\widetilde{X})^{\Gamma}$
- let $n := \dim M$ be even; then $E = E^+ \oplus E^-$
- ► $[D] := [U^*\chi(\widetilde{D})_+] \in K_1(D^*(\widetilde{X})^{\Gamma}/C^*(\widetilde{X})^{\Gamma}) = K_0(X)$, with U a suitable (local) unitary operator $L^2(M, E^+) \to L^2(M, E^-)$.
- if *n* is odd $[D]:=[\frac{1}{2}(1+\chi(\widetilde{D})] \in K_0(D^*(\widetilde{X})^{\Gamma}/C^*(\widetilde{X})^{\Gamma}) = K_1(X).$

▶ $[D] \in K_*(X)$ is the fundamental class associated to D

• recall δ in the Higson-Roe surgery sequence:

 $\cdots \to \mathcal{K}_{*+1}(\mathcal{C}_r^*\Gamma) \to \mathrm{S}_*^{\Gamma}(\widetilde{X}) \to \mathcal{K}_*(X) \xrightarrow{\delta} \mathcal{K}_*(\mathcal{C}_r^*\Gamma) \to \cdots$

- ▶ $\operatorname{Ind}_{\operatorname{Roe}}(\widetilde{D}) := \delta[D] \in K_n(C^*(\widetilde{X})^{\Gamma})$ is the Roe index class.
- ► Important: $\operatorname{Ind}_{\operatorname{Roe}}(\widetilde{D}) = \operatorname{Ind}_{\Gamma}(\widetilde{D})$ in $K_*(C^*(\widetilde{X}))$, our friend !

Rho-classes

- Assume that \widetilde{D} is L^2 -invertible.
- \widetilde{D} L^2 -invertible \Rightarrow $\operatorname{Ind}_{\Gamma}(\widetilde{D}) = 0$ in $K_*(C^*(\widetilde{X})^{\Gamma}) = K_*(C_r^*\Gamma)$
- thus $\delta[D] \equiv \operatorname{Ind}_{\Gamma}(\widetilde{D}) = 0$

• $\rho(\widetilde{D}) \in \mathrm{S}^{\Gamma}_{*}(\widetilde{X})$ is a natural lift of [D].

$$\mathrm{S}^{\Gamma}_{*}(\widetilde{X}) \longrightarrow K_{*}(X) \xrightarrow{\delta} K_{*}(C_{r}^{*}\Gamma)$$

$$\rho(\widetilde{D}) \xrightarrow{\delta} 0$$

Rho-classes (cont)

More precisely: if D̃ is L²-invertible and χ = 1 on the positive part of the spectrum, then the rho classes in K_{n+1}(D^{*}(X̃)^Γ) ≡ S^Γ_n(X̃) are defined as

$$\rho(\widetilde{D}) = [U^*\chi(\widetilde{D})_+] \text{ and } \rho(\widetilde{D}) = [\frac{1}{2}(1+\chi(\widetilde{D}))].$$

(same definition as for [D] but now no-need to work in the quotient because of the invertibility assumption).

- Notice that if *n* is odd then $\rho(\widetilde{D}) = [\Pi_{\geq}(\widetilde{D})]$
- we also get the universal rho classes $\rho_{\Gamma}(\widetilde{D}) := \widetilde{u}_* \rho(\widetilde{D})$ in $K_{n+1}(D^*_{\Gamma}) \equiv S^{\Gamma}_*(E\Gamma)$
- Main example: if g is a positive scalar curvature metric and X is spin, then we have ρ(g) := ρ(D̃_g^{spin})

Back to the Cheeger-Gromov rho invariant

- ► so we have defined the rho class in a strange K-theory group $S_*^{\Gamma}(\widetilde{X}) := K_{*+1}(D^*(\widetilde{X})^{\Gamma})$!
- Let X be odd dimensional and let \widetilde{D} be L^2 -invertible
- Benemeur and Roy prove that there exists a homorphism of abelian groups τ_{CG} : S^Γ₁(X̃) → ℝ such that

$$au_{\mathrm{CG}}(
ho(\widetilde{D})) =
ho_{\mathrm{CG}}(\widetilde{D}) := \eta_{\Gamma}(\widetilde{D}) - \eta(D)$$

the Cheeger-Gromov rho invariant

- All things considered this seems to be the right rho class !
- now we want to define higher rho numbers